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Abstract

Nuclear waste ceramic forms among which the apatite, are under development as an alternative to waste glass in case

of selective con®nement. In that context, we studied the di�usion of lanthanide ions (La3�, Eu3�) in hydroxyapatite over

a temperature range of storage interest, taking into account a possible enhanced di�usion due to irradiation e�ects. The

lanthanide ions are introduced in apatite targets using ion implantation. The di�usion coe�cients are deduced from

Rutherford backscattering spectroscopy (RBS) at each step of annealing and irradiation procedure. Evidence of en-

hanced di�usion is shown and can be explained as a di�usion process governed by defect migration towards the surface.

Time resolved laser-induced ¯uorescence measurements show that, during enhanced di�usion performed under vacu-

um, the europium ions substitute the calcium ions preferentially in Ca(I) hydroxyapatite sites. Ó 2000 Elsevier Science

B.V. All rights reserved.

1. Introduction

Apatites are potentially valuable inertial matrices to

actinide and some long-lived ®ssion product con®ne-

ment [1]. Moreover, hydroxyapatite is formed as waste

ashes from nuclear fuel reprocessing are incorporated in

cement [2]. In this process hydroxyapatite becomes part

of the waste matrix. The general formula for apatite is

Cal0(PO4)6X2, X being a ¯uorine, chlorine ion or a hy-

droxyl group. The crystal structure of apatite (space

group P63=m) permits a wide range of cation and anion

substitutions [3±5]. In particular the two calcium posi-

tions have distinct stereochemistries (Ca(I) with C3

symmetry surrounded by nine oxygen and Ca(II) with

CS symmetry surrounded by six oxygen and one (OHÿ)

ion [6,7]). They can accommodate a variety of univalent,

divalent and trivalent cations as substituents [8].

The purpose of this work is to study di�usion of

lanthanum and europium enhanced by alpha radioac-

tivity environment. Lanthanum has been chosen as rep-

resentative of a major yield ®ssion product. Europium

is representative of actinides as the chemical properties

of Eu3� are very similar to those of trivalent actinides

and in particular to Am3�. Furthermore, Eu3� can be

used as a local structural probe [9]. Implantation is used

to introduce La and Eu ions into apatite. During the

annealing procedure, the samples are irradiated by bis-

muth ions having an energy of 100 keV. These 100 keV

Bi ions are representative of recoil nuclei resulting from

actinide alpha radioactivity. They are known to produce

a large atomic displacement rate [10]. Di�usion data are

deduced from Rutherford backscattering spectroscopy

(RBS) measurements and are analyzed through a di�u-

sion model [11]. These results are discussed together with

structural data obtained by time resolved luminescence

spectroscopy.

2. Di�usion measurements

2.1. Experimental

Synthetic microcrystalline hydroxyapatite referenced

as DNA Grade Biogel HTP was stacked into pellets at

0.4 GPa. The high crystallinity of the sample was
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con®rmed by X-ray di�raction. Observation using

scanning electron microscopy shows regular crystal sizes

(60� 20 nm) with typical prism-shaped morphology of

hydroxyapatite [12], this morphology implies a high

density of grain boundaries with a mean diameter less

than 10 nm.

Hydroxyapatite was implanted with 30 keV La� or

Eu� ions at room temperature using the IPNL separa-

tor. The nominal dose was of 5� 1015 at./cm2 corre-

sponding to a maximum La or Eu concentration of

4 at.%. Four series of implanted samples were then

submitted to successive 100 keV Bi2� irradiation, the

annealing temperature being, respectively, set to 25°C,

150°C, 300°C and 500°C. It should be noticed that the

bismuth ion range in the apatite pellets is equal to

40 nm, which is much larger than the depth range cor-

responding to the lanthanum distribution (16 nm); thus

there is no overlap between the two distributions. In

order to understand the in¯uence of the irradiation ¯ux,

the Bi2� beam intensity was kept constant and equal to

5, 10 and 20 lA. Irradiation time was set in order to lead

to cumulative doses ranging between 2:5� 1015 and

7:5� 1015 at./cm2. The sputtering yield for Bi bom-

bardment was estimated using the SRIM code [13] and

leads to a sputter loss of 10 nm for a 7:5� 1015 at./cm2

bismuth dose. At each step of the procedure, RBS

analysis was performed allowing measurements of lan-

thanum pro®les as a function of annealing and bom-

bardment conditions.

2.2. Analysis

Lanthanum pro®les deduced from RBS measure-

ments are shown in Fig. 1 for an annealing temperature

of 150°C and for di�erent Bismuth doses. We noticed no

loss of lanthanum ions in the samples, showing that

sputtering due to the bombardment does not in¯uence

the di�usion process. However, a slight shift of the

overall lanthanum distribution was observed which can

be explained by the unidirectional beam bombardment.

These distributions are analyzed on the basis of a model

derived from Fick's second Law [11]
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where C�x; t� is the lanthanum concentration, D the

di�usion coe�cient and v is the drift velocity related to

the driving force f by the Nernst relation

v � fD
kT
; �2�

where k is BoltzmannÕs constant. Eq. (1) is solved using

a numerical procedure based on ®nite di�erences which

allows to reproduce the lanthanum pro®le evolution.

This approach is fully described in Cranck's book [14]

and our implementation is based on the NAG FOR-

TRAN library routine [15]. The di�usion coe�cient

values are deduced from the ®t optimization.

Results are presented in Fig. 2. In the 25±500°C

temperature range, irradiation-enhanced di�usion coef-

®cients are nearly independent on temperature, they

depend only on the bismuth beam intensity. In a previ-

ous work, Martin et al. [16] have studied thermal di�u-

sivity of lanthanum and europium in hydroxyapatite,

they determined an activation energy and a pre-expo-

nential factor in the 400±600°C temperature range:

1.3 eV/at. and 1:3� 10ÿ7 cm2/s leading to di�usion

coe�cient values of 2:35� 10ÿ17 cm2/s at 400°C and

2:7� 10ÿ15 cm2/s at 500°C. In order to compare thermal

and irradiation-enhanced di�usion we report the data

obtained by Martin et al. in Fig. 2, showing that in our

experimental conditions the part of thermal di�usivity is

negligible.

Fig. 1. Lanthanum pro®les deduced from RBS measurements

in case of 150°C annealing and after bismuth bombardment at

di�erent doses.

Fig. 2. Measured La di�usion coe�cient vs. temperature, for

di�erent bismuth beam intensities.
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During bismuth irradiation, vacancies and intersti-

tials are created at a constant rate and are mobile, thus

they can anneal out by various mechanisms, such as

migration to internal or external surfaces, direct vacan-

cies±interstitials annihilation, etc. These processes result

in a steady-state concentration of defects in excess of the

thermodynamic concentration characteristic of the

working temperature. Dienes et al. [17] have treated the

di�erent annealing mechanisms and they have shown

that one can easily identify the process that governs

radiation-enhanced di�usion by representing the di�u-

sion coe�cient versus annealing temperature. In our

case, the behavior is typical of a radiation-enhanced

di�usion governed by defect annihilation at the surfaces

or grain boundaries, it is due to the fact that the irra-

diation rate is strong enough to prevent spontaneous

vacancy±interstitial recombination.

Radiation-enhanced di�usion is described by the

formalism of Dienes et al. [17], the equations are sim-

pli®ed as there is no vacancy±interstitial spontaneous

recombination
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D� � Dvac � Cvac � Dint � Cint: �4�
Cvac and Cint are the total atomic fractions of vacancies

and interstitials, Cth
vac is the atomic fraction of vacancy

due to thermal annealing only, P�x� is the production

rate of vacancy±interstitial pairs, Kvac and Kint the

characteristic proportionality constants for the rate of

defects removal, Dvac and Dint the di�usion coe�cients

for vacancies and interstitials, D� the enhanced atomic

di�usion coe�cient.

Under steady-state condition, Eq. (3) reduces to [11]
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The constants Kint and Kvac are given by the relation

(6)

Kvac � avacvvack
2
vac;

Kint � aintvintk
2
int;

�6�

where vvac and vint are the e�ective jump frequencies for

vacancies and interstitials, kvac and kint the jump dis-

tances for vacancies and interstitials, aint and avac the

proportionality constants. The di�usion coe�cients are

also expressed as a function of jump frequencies and

jump distances by the following relations:

Dvac � Cvacvvack
2
vac;

Dint � Cintvintk
2
int:

�7�

From Eqs. (5)±(7), we obtained the expressions of the

di�usion coe�cients

Dvac � P �x�
avac

� Cth
vac � vvac � k2

vac;

Dint � P �x�
aint

:

�8�

As the thermal di�usion coe�cient [18] (Cth
vacvvack

2
vac)

is negligible compared to enhanced di�usion, we see

from Eq. (8) that Dvac and Dint are temperature inde-

pendent. The increased vacancy concentration due to

the irradiation causes a proportional increase in di�u-

sion by annihilation mechanism. The measured di�usion

coe�cient indeed seems to be proportional to the beam

intensity. Such behavior is observed in Fig. 2, where the

measured di�usion coe�cients are shown to be tem-

perature independent and to vary linearly with bismuth

beam intensity

DI�2:5 lA � �2:5� 0:2� � 10ÿ15 cm2=s;

DI�5 lA � �5:2� 0:7� � 10ÿ15 cm2=s;

DI�7:5 lA � �1:2� 0:1� � 10ÿ14 cm2=s:

Martin et al. [16] have indeed observed that under

thermal conditions all the lanthanide ions occupy sub-

stitutional calcium sites in hydroxyapatite. Then, the

arising question is whether such an enhanced migration

is connected either with lanthanide ion substitution in

calcium sites or with grain boundary di�usion.

3. Europium location

Trivalent europium ions are widely used as lumines-

cent probes in the investigation of the crystallographic

structure of the activator centers in apatite [6]. The
5D0 ! 7F0;

7F1;
7F2 transitions since Eu3� induces spe-

ci®c changes in the emission line, while the relative in-

tensity is characteristic of the local symmetry [19].

3.1. Experimental

A pulsed nitrogen laser (Molectron, kexc: 337 nm) was

used as an excitation source. The spectral analysis of the

luminescence was achieved at room temperature, by a

MS 125 Oriel monochromator (400 and 1200 lines/mm

gratings) and an intensi®ed CCD detector (LOT-ORIEL

MSTASPEC V) coupled with a delay generator (Stan-

ford RS DG535) enabling time-resolving spectra acqui-

sition. Long decay emissions of Eu3� ions were recorded

with a delay of 1 ls and a gate width of 2 ms while short
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decay emissions of Eu2� were recorded without delay

and with a gate width of 100 ns.

3.2. Analysis

The emission spectra of the as-implanted pellet shows

the characteristic bands of Eu3�. They correspond to

two sets of Eu3� transitions, 5D0 ! 7F0;
7F1;

7F2 related

to Ca(II) (574, 629 nm) and Ca(I) positions (578, 591

and 617 nm) [9]. In Fig. 3, we observe that after bom-

bardment, the ®rst set related to Ca(II) substitutions

disappears while the second one, related to Ca(I) sub-

stitution, remains. The emission intensity of Eu3� in a

Ca(I) position increases regularly with the Bi dose, but

over 10l6 Bi/cm2 the emission is unfortunately unob-

served due to ablation e�ect. Along with these data, the

short decay emission �s � 600 ns� of Eu2� is observed as

a broad weak band (425±460 nm). It follows a similar

evolution to that of Eu3� but, in this case, the Ca(I) and

Ca(II) contributions could not be resolved.

4. Discussion

Evidence of lanthanum ion irradiation-enhanced

di�usion with a 100 keV bismuth beam has been shown.

It can be explained as a di�usion process governed by a

defect migration towards both internal and external

surfaces. Evidence of irradiation-enhanced di�usion has

been obtained for bismuth doses lower than 1016 at./cm2.

In such conditions, the surface sputtering phenomenon

does not a�ect the lanthanum pro®le. In order to know

if bismuth irradiation leads to amorphization in the

sample, we performed small angle X-ray di�raction at

an angle of 0.4° from the surface. Such an angle leads to

a depth analysis of 110 nm [18], which is less than the

bismuth range in the sample, thus guaranteeing that the

probed area has been irradiated. We used irradiation

doses up to 1016 bismuth/cm2. As we can see in Fig. 4, no

modi®cation of the X-ray spectrum was observed which

shows that amorphization of the apatite lattice is negli-

gible. This result is con®rmed by Ritter and Mark [20]

who had observed that under a irradiation, defects are

annealed very quickly in apatite.

In order to get information on possible substitution

of lanthanide ion in the apatite lattice, time resolved

laser-induced measurements have been performed using

Eu-implanted ions as a probe. The weak emission of the

Eu in as-implanted pellets indicates that the main part of

the Eu ions is located in microcrystallite interstitial po-

sitions. However, a small amount of Eu ions is shown to

occupy the substitutional sites, Ca(II) and Ca(I). Anal-

ysis of emission spectra obtained after Bi bombardment

shows that the main mechanism is the di�usion of Eu

ions from interstitials, as well as from Ca(II) substitu-

tionnal positions, to the high-symmetry Ca(I) sites. This

di�usion convergence to Ca(I) site is consistent with the

fact that the bombardment was conducted under vacu-

um. The same behavior has been observed during Eu

thermal doping under vacuum by Gaft et al. [9]. The

Ca2� ! Eu3� substitution can occur much more easily

with charge compensation provided by vacancies, than

in the case of Ca(II). Furthermore, the non-oxidizing

atmosphere leads to the Eu partial reduction to Eu2�

ions, which are located in Ca positions in the same way

as Eu3� ions. However, the much broader emission band

did not unable the determination of the kind of involved

Ca site. According to our previous results [18] on ther-

mal di�usion performed under air, the reducing or oxi-

dizing environment appears to be the key parameter for

the Eu di�usion and for its substitutional location inside

the apatite structure.

Fig. 3. Emission spectra of as Eu-implanted and of Bi-bom-

barded apatite (kexc � 337 nm)

Fig. 4. Small angle X-ray di�raction spectra of hydroxyapatite

in function of bismuth irradiation doses.
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5. Conclusion

The goal of this work was not to reproduce as close

as possible the possible nuclear storage conditions, but

to give quantitative information on di�usion process

that can occur in this context. Our longest irradiation

time was 600 s which is equivalent to 2� 1021 a decays

per gram which corresponds to 2000 yr of geological

storage [18]. Furthermore, we made irradiation with a

unidirectional beam which leads to a shift of the distri-

bution. In the context of a migration barrier this e�ect

cannot occur because a emission will be spatially inde-

pendent. Hopefully, as explained in paragraph 2.2, the

transport term v has no in¯uence on the value of the

di�usion coe�cient. The fact that di�usion coe�cient is

directly proportional to the simulated alpha radioactiv-

ity, we can easily extrapolate its value to the dose rate

that will be expected, the value obtain is equal to

2� 10ÿ23 cm2/s which is very weak. Thus, hydroxyapa-

tite appears to be a good candidate to migration barrier

in nuclear waste storage.
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